The volume of data we create is ever expanding. Every time we conduct a search, complete a purchase, visit a website or comment on a post, we add to that vast ocean of information. As we all know, this information can be a valuable asset, but only if we know how to tap into and extract the bits that are relevant for our use.
It is a well-recognized fact that the volume of data has increased far faster than most companies' ability to process it. According to a recent study, this glut of data has crippled some executives, with 61 percent of managers reporting an information overload at their workplace. This overload led more than 50 percent of them to ignore current data in their decision-making processes simply because they did not have the means to transform that data into actionable information. This leads to the question: What decisions could your company make if you had all of the information you needed?
Data management systems provide the key to utilizing data in its many, various forms.
Strategic implementation of data management technologies can help your company achieve:
Structured data is highly organized information that can already be easily indexed, uploaded into databases, and detected by search operations or algorithms. Structured data usually consists of objective, numerical information that does not require interpretation.
Some sources of structured data include:
Transactional Data
Examples of unstructured data include:
Data Mining
Data mining processes review large amounts of data searching for consistent patterns or relationships. They then attempt to validate these potential patterns by applying them to new subsets of data. The two main tasks of data mining technology are the creation of descriptive and predictive powers. Descriptive powers attempt to find interesting, interpretable trends in the available data sets. These trends create a picture of what exists now. The predictive powers use that information to extrapolate unknown values into the future.
Some of the more fundamental techniques used in data mining include:
Some key techniques of text mining include:
It is a well-recognized fact that the volume of data has increased far faster than most companies' ability to process it. According to a recent study, this glut of data has crippled some executives, with 61 percent of managers reporting an information overload at their workplace. This overload led more than 50 percent of them to ignore current data in their decision-making processes simply because they did not have the means to transform that data into actionable information. This leads to the question: What decisions could your company make if you had all of the information you needed?
Data management systems provide the key to utilizing data in its many, various forms.
Strategic implementation of data management technologies can help your company achieve:
- Improved organizational consistency
- Increased productivity
- Greater collaboration and communication
- Faster, more knowledgeable business decisions
- Conflicting information and analysis
- Decreased productivity
- Organizational waste
- Missed opportunities
Where is the data coming from?
Data is created by a vast multitude of different sources. Data analysts tend to define data as either structured or unstructured.Structured data is highly organized information that can already be easily indexed, uploaded into databases, and detected by search operations or algorithms. Structured data usually consists of objective, numerical information that does not require interpretation.
Some sources of structured data include:
Transactional Data
- Point-of-sale transactions
- E-commerce or online purchases
- 'Behavioral' transactions, such as clickstream data
- Data generated by functional devices, such as network-connected home appliances
- Smart utility meters
- Monitored processes of factory machinery
- Data generated or recorded by in-app transactions
- Updates in status or locations
- Webserver logs
Examples of unstructured data include:
- Information contained in emails
- Audio and video files
- Blogs and wikis
- Postings on Twitter, Facebook, Instagram and other social media platforms
How do you sift through the data?
Now that we have identified some of the sources of data, what techniques are available for transforming it into actionable knowledge? The most common techniques are data mining and text mining.Data Mining
Data mining processes review large amounts of data searching for consistent patterns or relationships. They then attempt to validate these potential patterns by applying them to new subsets of data. The two main tasks of data mining technology are the creation of descriptive and predictive powers. Descriptive powers attempt to find interesting, interpretable trends in the available data sets. These trends create a picture of what exists now. The predictive powers use that information to extrapolate unknown values into the future.
Some of the more fundamental techniques used in data mining include:
- Association: Making a correlation between two items to determine patterns. For example, in a study of purchasing habits, you may note that people often buy cream and coffee together, thus creating an association between them.
- Classification: Defining multiple attributes used to identify an item, a product or a customer. For example, you could classify a potential customer pool based on age, income and zip code.
- Sequential Patterns: Used to analyze long-term data to find regular occurrences of similar events. This can be useful when noting that customers tend to buy or search for similar products at particular times of the year. For example, this data may help you notice that as summer approaches, more customers search for vacation homes.
Some key techniques of text mining include:
- Entity Extraction: Identifying and classifying key elements, such as people, places or companies within a text into predefined categories. This allows an analyst to review a quick, structured representation of the document's contents.
- Sentiment Analysis: Identifying and categorizing opinions expressed in a piece of text in order to determine the writer's reaction to a topic is positive, negative or neutral.